In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and graphically illustrate the complete exact density-to-wavefunction map that underly the Hohenberg-Kohn theorem in density functional theory. Having the explicit wavefunction-to-density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-towavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this feature as intra-system steepening and discuss how it relates to the well-known inter-system derivative discontinuity. The inter-system derivative discontinuity is an exact concept for coupled subsystems with degenerate ground state. However, the coupling between subsystems as in charge transfer processes can lift the degeneracy. An important conclusion is that for such systems with a neardegenerate ground state, the corresponding cut along the particle number N of the exact density functionals is differentiable with a well-defined gradient near integer particle number.
IntroductionOver the last decades ground-state density-functional theory (DFT) has become a mature tool in material science and quantum chemistry [1][2][3][4][5]. Provided that the exact exchange-correlation (xc) functional is known, DFT is a formally exact framework of the quantum many-body problem. In practice, the accuracy of observables in DFT highly depends on the choice of the approximate xc-functional. From the local density approximation (LDA) [6], to the gradient expansions such as the generalized gradient approximations (GGAs), e.g. Perdew-Burke-Enzerhof [7] and the hybrid functionals such as B3LYP [8], to the orbital-functionals such as optimized effective potentials [9] and to the range-separated hybrids such as HSE06 [10], the last decades have seen great efforts and achievements in the development of functionals with more accurate and reliable prediction capability.Nonetheless, available approximate functionals such as the LDA, the GGA's and the hybrid functionals have known shortcomings to model gaps of semiconductors [11], molecular dissociation curves [12], barriers of chemical reactions [13], polarizabilities of molecular chains [14, 15], and charge-transfer excitation energies, particularly between open-shell molecules [16].Practical applications of density functional theory encounter two major problems: (i) while the Hohenberg-Kohn theorem tells us that a...