Nations and organizations need to secure locations of economic, military, or political importance from groups or individuals that can cause harm. The fact that there are limited security resources prevents complete security coverage, which allows adversaries to observe and exploit patterns in patrolling or monitoring, and enables them to plan attacks that avoid existing patrols. The use of randomized security policies that are more difficult for adversaries to predict and exploit can counter their surveillance capabilities and improve security. In this chapter we describe the recent development of models to assist security forces in randomizing their patrols and their deployment in real applications. The systems deployed are based on fast algorithms for solving large instances of Bayesian Stackelberg games that capture the interaction between security forces and adversaries. Here we describe a generic mathematical formulation of these models, present some of the results that have allowed these systems to be deployed in practice, and outline remaining future challenges. We discuss the deployment of these systems in two real-world security applications: 1) The police at the Los Angeles International Airport uses these models to randomize the placement of checkpoints on roads entering the airport and the routes of canine unit patrols within the airport terminals.2) The Federal Air Marshal Service uses these models to randomize the schedules of air marshals on international flights.