2022
DOI: 10.48550/arxiv.2201.13324
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Guided Semi-Supervised Non-negative Matrix Factorization on Legal Documents

Abstract: Classification and topic modeling are popular techniques in machine learning that extract information from large-scale datasets. By incorporating a priori information such as labels or important features, methods have been developed to perform classification and topic modeling tasks; however, most methods that can perform both do not allow for guidance of the topics or features. In this paper, we propose a method, namely Guided Semi-Supervised Non-negative Matrix Factorization (GSSNMF), that performs both clas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 2 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?