In Guided Wave Structural Health Monitoring (GW-SHM), a strong need for reliable and fast simulation tools has been expressed throughout the literature in order to optimize SHM systems or demonstrate performance. Even though guided wave simulations can be conducted with most finite elements software packages, computational and hardware costs are always prohibitive for large simulation campaigns. A novel SHM module has been recently added to the CIVA software and relies on unassembled high order finite elements to overcome these limitations. This paper focuses on the thorough validation of CIVA for SHM to identify the limits of the models. After introducing the key elements of the CIVA SHM solution, a first validation is presented on a stainless steel pipe representative of the oil and gas industry. Second, validation is conducted on a composite panel with and without stiffener representative of some structures in the aerospace industry. Results show an excellent match between the experimental and simulated datasets, but only if the input parameters are fully determined prior to the simulations.