Accurate simulation of water balance components is crucial for effective water and land management practices. The performance of process‐based hydrological models relies on the accurate determination of input variables. The objective of this study is to quantify the magnitude of the effect of soil properties (depth and texture) and biophysical parameters on water balance simulation for a forested catchment using the Soil and Water Assessment Tool (SWAT+). Simulations were carried out for a baseline scenario using the default soil inputs, followed by extending the soil profile depth up to 15 m under three different rainfall scenarios. Sensitivity analysis of model outputs was performed using the SENSitivity ANalysis (SENSAN) programme of the Parameter ESTimation (PEST) suite, coupled with SWAT+. The results showed that increasing soil profile depth to 15 m led to around 50% increase in water yield, and around 20% reduction in percolation with slight variations across the three rainfall scenarios. Evapotranspiration rates were slightly increased in deeper soil profiles. The sensitivity of evapotranspiration, surface runoff, and percolation to LAI‐related biophysical parameters was pronounced, highlighting the need to include such parameters in SWAT+ model calibration. The water uptake from deeper soil layers by deep roots, even in rocky substrates, as documented in the literature, is not adequately captured by the SWAT+ model. Our work showed that in general, developing local soil databases with detailed information on deeper layers is needed, to improve the accuracy and reliability of hydrological models in predicting water fluxes, thereby supporting informed water resources management decisions.