2021
DOI: 10.1021/acscentsci.1c00594
|View full text |Cite
|
Sign up to set email alerts
|

Guidelines for O-Glycoside Formation from First Principles

Abstract: With a view to reducing the notorious complexity and irreproducibility of glycosylation reactions, 12 guidelines for the choice of concentration, temperature, and counterions are adumbrated.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
75
0
12

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 52 publications
(88 citation statements)
references
References 115 publications
(197 reference statements)
1
75
0
12
Order By: Relevance
“…Oxidation of the anomeric sulfur atom by NIS (Figure 1A), is thought to induce formation of the glycosyl cation that may be stabilized by a solvent‐separated interaction with the triflate counterion or by direct contact, forming either a glycosyl triflate or glycosyl halide intermediate [17] . The strength of interaction between the predominant intermediate and the nucleophile, as well as the electronic or steric participation by neighboring or remote protecting groups and the relative energies of the intermediates, dictate kinetics and the stereochemical outcome of the resultant glycosidic bond [2, 17, 18] . Since the oxidized adduct is required for elaboration, we reasoned that any approach to temperature optimization should begin with the activation of glycosyl donor by NIS/TfOH.…”
Section: Introductionmentioning
confidence: 99%
“…Oxidation of the anomeric sulfur atom by NIS (Figure 1A), is thought to induce formation of the glycosyl cation that may be stabilized by a solvent‐separated interaction with the triflate counterion or by direct contact, forming either a glycosyl triflate or glycosyl halide intermediate [17] . The strength of interaction between the predominant intermediate and the nucleophile, as well as the electronic or steric participation by neighboring or remote protecting groups and the relative energies of the intermediates, dictate kinetics and the stereochemical outcome of the resultant glycosidic bond [2, 17, 18] . Since the oxidized adduct is required for elaboration, we reasoned that any approach to temperature optimization should begin with the activation of glycosyl donor by NIS/TfOH.…”
Section: Introductionmentioning
confidence: 99%
“…1 Hence, many efforts were devoted to this reaction. [2][3][4][5][6][7][8] Among the reported strategies, glycosidations with the help of a catalyst [9][10][11][12][13] are particularly attractive, also with regard to application prospects in industrial production. Inspired by nature, we developed recently an acid─base catalysis glycosidation pathway 10 : A catalyst, with (i) low affinity to the glycosyl donor leaving group, but with (ii) high affinity to the acceptor, binds the acceptor ROH to generate reversibly a RO−Cat−H adduct.…”
Section: Introductionmentioning
confidence: 99%
“…[12] Andreana und Crich stellten kürzlich fest, dass Aktivierungsenergie, Selektivität und komplexe Geschwindigkeitsregime, die bei der Bildung glykosidischer Bindungen eine Rolle spielen, alle von der Temperatur abhängen und dass Experimente bei einer einzigen Temperatur die Reproduzierbarkeit und Qualität von Glykosylierungen verbessern würden, indem sie eine Schlüsselvariable festlegen. [2] Wir sind daran interessiert, diese Erkenntnisse in die Praxis umzusetzen, indem wir die Temperaturbehandlung für eine Reihe von handelsüblichen Glykosyl-Donors optimieren, die einen hohen Prozentsatz der im menschlichen Glykom vorkommenden Bindungen liefern können. [13] Ein besseres Verständnis der Temperatur würde den Verbrauch von Glykosyl-Donors verringern und die Gesamteffizienz verbessern, was den Zugang zu interessanten und nützlichen Strukturen erweitern würde.…”
Section: Introductionunclassified
“…Mannosid 1 wird bei einer Temperatur zwischen À 19 und À 24 °C schnell aktiviert, vermutlich wenn genügend thermische Energie zur Verfügung steht, um die Aktivierungsbarriere oder genauer gesagt den Aktivierungsentropieterm TΔS � zu überwinden, der an der Umwandlung in Zwischenprodukte beteiligt ist. [2] Wenn 1 also bei einer Glykosylierungsreaktion auf einer niedrigeren Temperatur als seiner T A gehalten wird, könnte die Reaktion kontrolliert ablaufen. Umgekehrt könnte die Behandlung von 1 bei erhöhter Temperatur zu schädlichen Nebenreaktionen führen, da das Ausgangsmaterial nach fünf Minuten nicht mehr zu erkennen ist.…”
Section: Introductionunclassified
See 1 more Smart Citation