Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. These existing methods vary widely in several respects including level of detail, specificity with respect to modeling and simulation, degree of quantitativeness, ease of use, and applicability to the sponsoring agency. All include some form of the notion of risk, which is conventionally defined as the product of the likelihood of an incorrect decision and the consequences of such a decision. A new method, the Quantitative-to-Qualitative Risk-based (QQR) method, was developed to make a quantitative recommendation regarding the re-validation of a modified model. The QQR method was developed with these goals in mind: to be quantitative, repeatable, and transparent to consider both model modifications and model use risk; to focus on model types and simulation applications of interest to the sponsoring agency; and to be simple and accessible so as to encourage its use in practical applications. The QQR method estimates the probability that not re-validating a modified model will lead to unacceptable consequences, given the modifications made to it. That estimated probability is meant to be interpreted, in the context of a re-validation decision, as a quantitative recommendation to re-validate the model. The method is based on a conditional probability formula that separates the various parts of the estimated probability into distinct terms and factors, and it provides procedures for estimating each term and factor. A central feature of the QQR method is a missions-means decomposition that allows both the method?s user to precisely and effectively identify the nature and extent of the modifications that were made to the model and the method to consider those modifications in its estimate. The QQR method was validated using a set of re-validation scenarios, each describing a model the modifications made to it, and the decision to be based on the model. The QQR method?s revalidation recommendations for the scenarios were compared to those of a set of human experts
NO WARRANTY THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDIN...