Background and purposeCoronal and sagittal plane long bone deformities can be corrected with guided growth, whereas transverse plane rotational deformities require osteotomy and internal or external fixation. We investigated whether rotational changes can be introduced with the plating technique.Methods45 rabbits (6 weeks old) were divided into 3 groups. The unoperated right tibia was used as control. In groups 1 and 3, two plates were placed obliquely to the long axis and in different directions. In group 2, a sham operation was performed with screws. Animals in groups 1 and 2 were followed for 4 weeks. In group 3 the implants were removed 4 weeks after the operation to observe rebound effect, and the animals were followed for another 4 weeks. The tibial torsion was assessed on computed tomography (CT). External rotation was accepted as a negative value.ResultsIn group 1, mean torsion was −20° (SD 7.9) in the right tibia and −2.9° (SD 7.2) in the left tibia (p < 0.001). In group 2, mean torsion was −23° (SD 4.9) in the right tibia and −26° (SD 6.5) in the left tibia (p = 0.2). In group 3, mean torsion was −21° (SD 6.3) in the right tibia and −9.5° (SD 5.3) in the left tibia (p < 0.001). Intergroup evaluation for left torsion showed a significant difference between group 2 and the other groups (p < 0.001). When the rebound effect was evaluated, there was no statistically significant difference between groups 1 and 3 (p = 0.08).InterpretationA rotational change was attained with this technique. Although a rebound effect was seen after implant removal, it did not reach statistical significance. The final rotational change remained constant.