Purpose
As reported in patients treated for androgenetic alopecia with finasteride (i.e., a blocker of the enzyme 5 alpha-reductase) and in an animal model, side effects affecting sexual, psychiatric, neurological, and physical domains, may occur during the treatment and persist with drug suspension. The etiopathogenesis of these side effects has been poorly explored. Therefore, we performed a genome-wide analysis of finasteride effects in the brain of adult male rat.
Methods
Animals were treated (i.e., for 20 days) with finasteride (1mg/rat/day). 24 h after the last treatment and 1 month after drug suspension, RNA sequencing analysis was performed in hypothalamus and hippocampus. Data were analyzed by differential expression analysis and Gene-Set Enrichment Analyses (GSEA).
Results
Data obtained after finasteride treatment showed that 186 genes (i.e., 171 up- and 15 downregulated) and 19 (i.e., 17 up- and 2 downregulated) were differentially expressed in the hypothalamus and hippocampus, respectively. Differential expression analysis at the drug withdrawal failed to identify dysregulated genes. Several gene-sets were enriched in these brain areas at both time points.
Conclusion
Some of the genes reported to be differentially expressed (i.e., TTR, DIO2, CLDN1, CLDN2, SLC4A5, KCNE2, CROT, HCRT, MARCKSL1, VGF, IRF2BPL) and GSEA, suggest a potential link with specific side effects previously observed in patients and in the animal model, such as depression, anxiety, disturbance in memory and attention, and sleep disturbance. These data may provide an important background for future experiments aimed at confirming the pathological role of these genes.