cardiovascular diseases (cVds), such as atherosclerosis, hypertension, myocardial infarction and diabetic heart disease, are associated with high morbidity and mortality rates worldwide, and may also induce multiple organ failure in their later stages, greatly reducing the long-term survival of the patients. There are several causes of cVds, but after nearly a decade of investigation, researchers have found that cVds are usually accompanied by an imbalance of gut microbiota and a decreased abundance of flora. More importantly, the metabolites produced by intestinal flora, such as trimethylamine and trimethylamine N-oxide, bile acids, short-chain fatty acids and aromatic amino acids, exert different effects on the occurrence and development of cVds, as observed in the relevant pathways in the cells, which may either promote or protect against CVD occurrence. It is known that changes in the intestinal flora following antibiotic administration, diet supplementation with probiotics, or exercise, can interfere with the composition of the intestinal flora and may represent an effective approach to preventing or treating cVds. The focus of this review was the analysis of gut microbiota metabolites to elucidate their effects on CVDs and to identify the most cost-effective and beneficial methods for treating cVds with minimal side effects.