The nasopharyngeal tract (NT) of human is a habitat of a diverse microbial community that work together with other gut microbes to maintain the host immunity. In our previous study, we reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome (bacteria, archaea and commensal respiratory viruses) but increases the abundance of pathobionts. This study aimed to assess the possible changes in the resident fungal diversity by the inclusion of opportunistic fungi due to the infection of SARS-CoV-2 in the NT of humans. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNAseq-based metagenomics analyses. Our results indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of NT fungi with a high inclusion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct microbiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where Saccharomyces cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species in the NT of COVID-19 patients. Importantly, 16% commensal fungal species found in the Healthy control were not detected in either COVID-19 patients or when they were recovered from the COVID-19. Pairwise Spearman's correlation test showed that several altered metabolic pathways had significant positive correlations (r > 0.5, p < 0.01) with dominant fungal species detected in three metagenomes. Taken together, our results indicate that SARS-CoV-2 infection causes significant dysbiosis of fungal microbiome and alters some metabolic pathways and expression of genes in the NT of human. Findings of our study might be helpful for developing microbiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.