Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies—genomics, transcriptomics, proteomics, and metabolomics—have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.