Sex mosaicism, also called gynandromorphism, refers to an accidental phenomenon in dioecious organisms (mainly animals) in which an individual phenotype includes both female and male characteristics. Despite the rarity of this phenomenon, elucidating the mechanisms of naturally occurring sex mosaicism should deepen our understanding of diverse sex determination and differentiation systems in nature. We report the results of a genetic study of a sex mosaic individual of the ant Diacamma sp. from Japan's Okinawa Island. Parentage analysis using microsatellite markers revealed that the female and male parts of the sex mosaic showed different inheritance patterns: female parts had alleles consistent with their biparental inheritance, whereas most of the male parts had alleles consistent with their paternal inheritance (i.e., androgenesis). We discuss plausible cytogenetic mechanisms that gave rise to the male parts of this individual: polyspermy and the subsequent independent cleavage by a surplus sperm pronucleus, and maternal genome elimination after fertilization of an ovule. Moreover, we hypothesize that the androgenetically produced males found in some Hymenoptera might share the same underlying cytogenetic mechanism with hymenopteran sex mosaicism.