Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Previous studies on Gyrinicola batrachiensis indicate that these pinworms have distinct reproductive strategies dependent on the development time to metamorphosis of their anuran tadpole hosts. In tadpoles of amphibian species with short developmental periods (a few weeks), female nematodes reproduce parthenogenetically, and only produce thick-shelled eggs used as transmission agents from tadpole to tadpole. In contrast, nematodes in tadpoles with longer larval developmental periods (months to years) reproduce by haplodiploidy, and females produce thick-shelled as well as autoinfective thin-shelled eggs. However, recent investigations on the haplodiploidy strain of G. batrachiensis indicate that plasticity exists in the ability of these nematodes to produce thin-shelled autoinfective eggs when these nematodes infect tadpoles of co-occurring amphibian species. Yet, little information is available on the potential mechanism for this reproductive plasticity because few co-occurring amphibian species have been examined for the reproductive strategies of these nematodes. Therefore, our goals were to document field host specificity and reproductive strategies of nematode populations in tadpoles of five co-occurring amphibian species that varied in their larval developmental periods. Additionally, we evaluated adult worm morphology from each infected amphibian species to assess any differences in worm development and reproductive strategy of pinworm populations in different amphibian species. Of the five amphibian species examined, four were infected with the haplodiploid strain of G. batrachiensis. Prevalence of G. batrachiensis ranged from a high of 83% in Acris blandchardi to a low of 15% in Pseudacris clarkii; whereas mean intensity was highest for Rana sphenocephala (10 ± 10.36) and lowest for Hyla chrysoscelis (3.23 ± 3.35). Prevalence appeared to be controlled by tadpole ecology and life history, while mean intensity appeared to be controlled by tadpole physiology and worm reproductive strategy, but not necessarily the developmental period of each anuran species. G. batrachiensis observed in long developing tadpoles of R. sphenocephala had high mean intensities and conformed to the haplodiploidy reproductive strategy with both male and female worms being present, and females produced thick-shelled and thin-shelled eggs. In contrast, tadpoles of A. blanchardi, H. chrysoscelis, and P. clarkii, which varied in their developmental times from long to short, had relatively low mean intensities and contained both male and female G. batrachiensis. However, female worms only produced thick-shelled eggs in these hosts. Importantly, morphological differences existed among female worms recovered from R. sphenocephala and female worms recovered from A. blanchardi tadpoles with long developmental periods. These data strongly suggest that when the haplodiploidy strain of G. batrachiensis is shared by tadpoles of different amphibian species, species-specific differences in interactions between these nematodes and their developme...
Previous studies on Gyrinicola batrachiensis indicate that these pinworms have distinct reproductive strategies dependent on the development time to metamorphosis of their anuran tadpole hosts. In tadpoles of amphibian species with short developmental periods (a few weeks), female nematodes reproduce parthenogenetically, and only produce thick-shelled eggs used as transmission agents from tadpole to tadpole. In contrast, nematodes in tadpoles with longer larval developmental periods (months to years) reproduce by haplodiploidy, and females produce thick-shelled as well as autoinfective thin-shelled eggs. However, recent investigations on the haplodiploidy strain of G. batrachiensis indicate that plasticity exists in the ability of these nematodes to produce thin-shelled autoinfective eggs when these nematodes infect tadpoles of co-occurring amphibian species. Yet, little information is available on the potential mechanism for this reproductive plasticity because few co-occurring amphibian species have been examined for the reproductive strategies of these nematodes. Therefore, our goals were to document field host specificity and reproductive strategies of nematode populations in tadpoles of five co-occurring amphibian species that varied in their larval developmental periods. Additionally, we evaluated adult worm morphology from each infected amphibian species to assess any differences in worm development and reproductive strategy of pinworm populations in different amphibian species. Of the five amphibian species examined, four were infected with the haplodiploid strain of G. batrachiensis. Prevalence of G. batrachiensis ranged from a high of 83% in Acris blandchardi to a low of 15% in Pseudacris clarkii; whereas mean intensity was highest for Rana sphenocephala (10 ± 10.36) and lowest for Hyla chrysoscelis (3.23 ± 3.35). Prevalence appeared to be controlled by tadpole ecology and life history, while mean intensity appeared to be controlled by tadpole physiology and worm reproductive strategy, but not necessarily the developmental period of each anuran species. G. batrachiensis observed in long developing tadpoles of R. sphenocephala had high mean intensities and conformed to the haplodiploidy reproductive strategy with both male and female worms being present, and females produced thick-shelled and thin-shelled eggs. In contrast, tadpoles of A. blanchardi, H. chrysoscelis, and P. clarkii, which varied in their developmental times from long to short, had relatively low mean intensities and contained both male and female G. batrachiensis. However, female worms only produced thick-shelled eggs in these hosts. Importantly, morphological differences existed among female worms recovered from R. sphenocephala and female worms recovered from A. blanchardi tadpoles with long developmental periods. These data strongly suggest that when the haplodiploidy strain of G. batrachiensis is shared by tadpoles of different amphibian species, species-specific differences in interactions between these nematodes and their developme...
Depending on the extent of evolutionary divergence among parent taxa, hybrids may suffer from a breakdown of co-adapted genes or may conversely exhibit vigour due to the heterosis effect, which confers advantages to increased genetic diversity. That last mechanism could explain the success of hybrids when hybridization zones are large and long lasting, such as in the water frog hybridization complex. In this hybridogenetic system, hybrid individuals exhibit full heterozygosity that makes it possible to investigate in situ the impact of hybridization. We have compared parasite intensity between hybrid Rana esculenta and parental R. lessonae individuals at the tadpole stage in two populations inhabiting contrasted habitats. We estimated intensity of Gyrinicola sp. (Nematoda) in the gut, Echinostome metacercariae in the kidneys and Haplometra cylindracea in the body cavity (both species belong to Trematoda). Despite high sampling effort, no variation in parasite intensity was detected between taxa, except a possible higher tolerance to H. cylindracea in hybrid tadpoles. The low effect of hybridization suggests efficient gene co-adaptation between the two genomes that could result from hemiclonal selection. Variation in infection intensity among ponds could support the Red Queen hypothesis.
Matrotrophy, the continuous extra‐vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy—placentotrophy—is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and histophagy are rarer, plausibly evolving through heterochronous development of the embryonic mouthparts and digestive system. During gestation, matrotrophic modes can shift, intergrade, and be performed simultaneously. Invertebrate matrotrophic adaptations are less complex structurally than in chordates, but they are more diverse, being formed either by a parent, embryo, or both. In a broad and still preliminary sense, there are indications of trends or grades of evolutionarily increasing complexity of nutritive structures: formation of (i) local zones of enhanced nutritional transport (placental analogues), including specialized parent–offspring cell complexes and various appendages increasing the entire secreting and absorbing surfaces as well as the contact surface between embryo and parent, (ii) compartmentalization of the common incubatory space into more compact and ‘isolated’ chambers with presumably more effective nutritional relationships, and (iii) internal secretory (‘milk’) glands. Some placental analogues in onychophorans and arthropods mimi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.