2020
DOI: 10.3390/sym12111750
|View full text |Cite
|
Sign up to set email alerts
|

Gyro Motor State Evaluation and Prediction Using the Extended Hidden Markov Model

Abstract: This study extracted the featured vectors in the same way from testing data and substituted these vectors into a trained hidden Markov model to get the log likelihood probability. The log likelihood probability was matched with the time–probability curve from where the gyro motor state evaluation and prediction were realized. A core component of gyroscopes is linked to the reliability of the inertia system to conduct gyro motor state evaluation and prediction. This study features the vectors’ extraction from f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
1
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 43 publications
0
1
0
3
Order By: Relevance
“…Nowadays, there are many research studies in the fields of precision instrument measurement and control, safety and quality inspection, maintenance, and measurement and control. Innovative discoveries provide convenient conditions for testing and management in the engineering and safety fields, so as to better ensure the precision of instruments and the accuracy of construction projects and ensure that high standards and high requirements for production safety and production quality are met [24][25][26][27][28][29].…”
Section: Introductionmentioning
confidence: 99%
“…Nowadays, there are many research studies in the fields of precision instrument measurement and control, safety and quality inspection, maintenance, and measurement and control. Innovative discoveries provide convenient conditions for testing and management in the engineering and safety fields, so as to better ensure the precision of instruments and the accuracy of construction projects and ensure that high standards and high requirements for production safety and production quality are met [24][25][26][27][28][29].…”
Section: Introductionmentioning
confidence: 99%
“…Bununla birlikte daha pek çok yapay zekâ yöntemi bulunmaktadır. Veriye dayalı ikinci yöntem ise istatistiksel öğrenme yöntemleridir (Dong et al, 2020). Mevcut veriyi temsil etmek için ARIMA, SARIMA, SARIMAX, Poisson otomatik gerileyen, doğrusal vb.…”
Section: Introductionunclassified
“…(2003) (Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003). Veriye dayalı yöntem ayrıca iki kategoriye ayrılmaktadır: Biri, sinir ağı ve bulanık mantık tarafından temsil edilen yapay zekâ yöntemleri ve diğeri ise istatistiksel öğrenme yöntemleridir (destek vektör makinesi (SVM) ve gizli Markov modeli (HMM) vs…) (Dong et al, 2020).…”
Section: Introductionunclassified
“…Seyrüsefer sisteminde yapay sinir ağları (YSA) kullanılarak filtre algoritmasının doğruluğu artırılmıştır (Jamil & Kim, 2019). HMM kullanılarak jiroskop motorunun durum değerlendirmesi ve tahmini yüksek hassasiyetle gerçekleştirilmiştir (Dong et al, 2020). Tek eksenli jiroskopta tahmin yöntemi olarak SVM kullanılmıştır (Miao, Li, & Ye, 2015;Song, Hu, & Zhou, 2017;Xudong, Pengfei, Yuanping, & Xingwu, 2013).…”
Section: Introductionunclassified