In this article, we examine a subspace L gyr ( G ) of the complex vector space, L ( G ) = { f : f is a function from G to C } , where G is a nonassociative group-like structure called a gyrogroup. The space L gyr ( G ) arises as a representation space for G associated with the left regular representation, consisting of complex-valued functions invariant under certain permutations of G. In the case when G is finite, we prove that dim ( L gyr ( G ) ) = 1 | γ ( G ) | ∑ ρ ∈ γ ( G ) | Fix ( ρ ) | , where γ ( G ) is the subgroup of Sym ( G ) generated by a class of permutations of G and Fix ( ρ ) = { a ∈ G : ρ ( a ) = a } .