Genetic colocalization is an approach for determining whether a genetic variant at a particular locus is shared across multiple phenotypes. Genome-wide association studies (GWAS) have successfully mapped genetic variants associated with thousands of complex traits and diseases. However, a large proportion of GWAS signals fall in non-coding regions of the genome, making functional interpretation a challenge. Colocalization relies on a Bayesian framework that can integrate summary statistics, for example those derived from GWAS and expression quantitative trait loci (eQTL) mapping, to assess whether two or more independent association signals at a region of interest are consistent with a shared causal variant. The results from a colocalization analysis may be used to evaluate putative causal relationships between omics-based molecular measurements and a complex disease, and can generate hypotheses that may be followed up by tailored experiments. In this article, we present an easy and straightforward protocol for conducting a Bayesian test for colocalization of two traits using the 'coloc' package in R with summary-level results derived from GWAS and eQTL studies. We also provide general guidelines that can assist in the interpretation of findings generated from colocalization analyses.