The objective of this work was to model weedy rice (Oryza sativa) and barnyard grass (Echinochloa spp.) competition with flood-irrigated rice, introducing it as a submodule into the SimulArroz model. The competition of both weeds with irrigated rice was modeled using the rectangular hyperbola equation. The “i” and “a” coefficients of the rectangular hyperbola for each of these weeds were obtained from the literature and from field experiments carried out in the state of Rio Grande do Sul, Brazil. In SimulArroz, yield loss was applied to penalize yield in all three technological levels (high, medium, and low) of physiological maturity. For weedy rice, the coefficient values of imean for the high, medium, and low technological levels were 1.04, 1.50, and 3.57 respectively, and, for barnyard grass, 4.70, 10.49, and 15.51 respectively. Coefficient “a” was 100 for weedy rice, and amean values for barnyard grass were 101.63, 104.92, and 96.88 for the high, medium, and low levels, respectively. The yield loss approach was suitable to model the competition of weedy rice and barnyard grass with irrigated rice. The submodule yield loss caused by the competition of weedy rice and barnyard grass with irrigated rice improves the predictive capacity of the SimulArroz model.