Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter hostassociated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a eld survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed effects of habitat disturbance on environmental bacterial resevoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community stability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communties. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting less bacterial exchange in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. In this system we use microbiome dispersion as a metric of population health. Combined, our ndings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.