Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
a b s t r a c tPaola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ).Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO 2 -rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area.In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water.Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13 C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13 C-rich dissolved inorganic carbon (DIC) and 18 O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO 2 .
a b s t r a c tPaola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ).Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO 2 -rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area.In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water.Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13 C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13 C-rich dissolved inorganic carbon (DIC) and 18 O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO 2 .
tra i sedimenti dei depositi sommersi in piattaforma continentale e i sedimenti delle spiagge adiacenti (Sardegna occidentale) .....
Active fluid seeps have been described in a wide range of geological environments and geodynamic contexts, which include continental shelves of non-volcanic passive margins and accretionary wedges. Fluids seeping in hybrid volcanic-sedimentary basins, characterized by the presence of magmatic intrusive complexes, have always received less attention. We detected and imaged dozens of distinct gas flares, as high as 700 m, on the continental slope of the Paola Basin in the southeastern Tyrrhenian Sea, at 550–850 m water depth. The sedimentary basin is surrounded by Pleistocene active and inactive volcanoes and volcanic-intrusive complexes, which formed in the back-arc basin of the Calabrian subduction zone, in response to subduction-induced mantle flow. Gas flares develop above pockmarks, craters and mud flows that form over and along the scarps of mound structures and correspond to seismic zones of free gas accumulation in the sub-seafloor. Here, methane-derived siderite shows enrichment in δ13C and δ18O isotopes likely related to methanogenesis and intermittent venting of deep-sourced CO2. Multichannel seismic reflection data showed that the gas flares develop in correspondence of doming and diapirism apparently originating from the top of the Messinian evaporites and nearby magmatic sills, that are present in the lower part of the Plio-Quaternary succession. These diapiric structures can be related to seafloor hydrothermal vent complexes fed by the igneous intrusions. Our data suggest that the vent complexes acted as fluid migration pathways and gas conduits, which at times are bounded by deep-rooted normal faults, leading to post-explosive near-surface microbial activity and seep carbonate formation. Fluids being mobilised by magmatism in the study area include: hydrocarbons and hydrothermal fluids generated at depth, interstitial water expelled during formation of polygonal faults. The close spatial correlation between seafloor seep manifestations, fluid migration pathways in the sub-surface involving part of the Messinian units and igneous features indicates that magmatic activity has been the main driver of fluid flow and can have a long-term effect in the southern Tyrrhenian Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.