Land cover classification in semiarid areas is a difficult task that has been tackled using different strategies, such as the use of normalized indices, texture metrics, and the combination of images from different dates or different sensors. In this paper we present the results of an experiment using three sensors (Sentinel-1 SAR, Sentinel-2 MSI and LiDAR), four dates and different normalized indices and texture metrics to classify a semiarid area. Three machine learning algorithms were used: Random Forest, Support Vector Machines and Multilayer Perceptron; Maximum Likelihood was used as a baseline classifier. The synergetic use of all these sources resulted in a significant increase in accuracy, Random Forest being the model reaching the highest accuracy. However, the large amount of features (126) advises the use of feature selection to reduce this figure. After using Variance Inflation Factor and Random Forest feature importance, the amount of features was reduced to 62. The final overall accuracy obtained was 0.91 ± 0.005 (α = 0.05) and kappa index 0.898 ± 0.006 (α = 0.05). Most of the observed confusions are easily explicable and do not represent a significant difference in agronomic terms.