The impact of anthropogenic disturbance on the fitness of prey should depend on the relative effect of human activities on different trophic levels. This verification remains rare, however, especially for large animals. We investigated the functional link between habitat selection of female caribou (Rangifer tarandus) and the survival of their calves, a fitness correlate. This top-down controlled population of the threatened forestdwelling caribou inhabits a managed forest occupied by wolves (Canis lupus) and black bears (Ursus americanus). Sixty-one per cent of calves died from bear predation within two months following their birth. Variation in habitat selection tactics among mothers resulted in different mortality risks for their calves. When calves occupied areas with few deciduous trees, they were more likely to die from predation if the local road density was high. Although caribou are typically associated with pristine forests, females selected recent cutovers without negative impact on calf survival. This selection became detrimental, however, as regeneration took place in harvested stands owing to increased bear predation. We demonstrate that human disturbance has asymmetrical consequences on the trophic levels of a food web involving multiple large mammals, which resulted in habitat selection tactics with a greater short-term fitness payoff and, therefore, with higher evolutionary opportunity.