This paper reviews findings on the anisotropy of the grain boundary energies. After introducing the basic concepts, there is a discussion of fundamental models used to understand and predict grain boundary energy anisotropy. Experimental methods for measuring the grain boundary energy anisotropy, all of which involve application of the Herring equation, are then briefly described. The next section reviews and compares the results of measurements and model calculations with the goal of identifying generally applicable characteristics. This is followed by a brief discussion of the role of grain boundary energies in nucleating discontinuous transitions in grain boundary structure and chemistry, known as complexion transitions. The review ends with some questions to be addressed by future research and a summary of what is known about grain boundary energy anisotropy.