Turbulence plays an important part in determining the chemical and physical processes, on both the micro-and macro-scales, whereby clouds are formed and behave. However, exactly how these are linked together and how turbulence impacts each of these processes is not yet fully understood. This is partly due to a lack of in-situ small scale fluctuation measurements due to a limitation in the available technology. It is in this context that the radiosondes, for which the material characterisation is presented in this paper, are being developed to generate a Lagrangian set of data which can be used to improve the ever-expanding knowledge of atmospheric processes and, in particular, the understanding of the interaction between turbulence and microphysical phenomenologies inside clouds (www.complete-h2020network.eu). Specifically, the materials developed for the balloons are discussed in further detail within this paper. Mater Bi and polylactic acid are the two common biodegradable thermoplastics that were used initially to make the balloons. To tailor their properties, the balloons were then coated with carnauba wax blended with either pine resin or SiO 2 nanoparticles. The properties such as hydrophobicity, toughness, elasticity and helium gas permeability are investigated and improved in order to keep the density of the radiosondes as constant as possible for a couple of hours.