Background
While rabbits are used as models in skin irritation tests, the presence of irregular patches and thickening on the dorsal skin can affect precise evaluation. In this study, genes associated with patchiness or non-patchiness on the dorsal skin of New Zealand rabbits were investigated to identify potential regulators of the patchiness phenotype.
Results
The results showed that parameters associated with hair follicles (HFs), such as HF density, skin thickness, and HF depth, were augmented in rabbits with the patchiness phenotype relative to the non-patchiness phenotype. A total of 592 differentially expressed genes (DEGs) were identified between the two groups using RNA-sequencing. These included KRT72, KRT82, KRT85, FUT8, SOX9, and WNT5B. The functions of the DEGs were investigated by GO and KEGG enrichment analyses. A candidate gene, KRT82, was selected for further molecular function verification. There was a significant positive correlation between KRT82 expression and HF-related parameters, and KRT82 overexpression and knockdown experiments with rabbit dermal papilla cells (DPCs) showed that it regulated genes related to skin and HF growth and development. Investigation of single nucleotide polymorphisms (SNPs) in the exons and promoter region of KRT82 identified four SNPs in the promoter region but none in the exons. The G.-631G > T, T.-696T > C, G.-770G > T and A.-873 A > C alleles conformed to the Hardy − Weinberg equilibrium, and three identified haplotypes showed linkage disequilibrium. Luciferase reporter assays showed that the core promoter region of KRT82 was located in the − 600 to − 1200 segment, in which the four SNPs were located.
Conclusions
The morphological characteristics of the patchiness phenotype were analyzed in New Zealand rabbits and DEGs associated with this phenotype were identified by RNA-sequencing. The biological functions of the gene KRT82 associated with this phenotype were analyzed, and four SNPs were identified in the promoter region of the gene. These findings suggest that KRT82 may be a potential biomarker for the breeding of experimental New Zealand rabbits.