A compact three order 5G low frequency band Hairpin Bandpass Filter (HPBF) is analyzed, designed and fabricated in this paper. The designed filter operates at 5G frequency range (5.975-7.125 GHz). 17.76% compactness in each λ/2 uniform transmission line (UTL) resonator of the filter is achieved by applying Non-Uniform Transmission Lines (NTLs) theory. This compactness will make modern wireless transmitter and receiver designs more compatible. Study on the best reduction size percentage and suitable constraints to design the required NTL resonator is highlighted in this paper. Six samples with different size reductions percentage are fabricated and measured. The simulation is carried out in this study uses High Frequency Structure
Simulator (HFSS) software and Computer Simulation Technology (CST) software. The simulated results for UTL HPBF and NTL HPBF with the six cases are verified with measurement. For the best size reduction percentage design, the measured results demonstrated that the 6.55 GHz NTL and UTL HPBF show good impedance matching within the unsilenced 5G frequency band.