2023
DOI: 10.1111/cgf.14898
|View full text |Cite
|
Sign up to set email alerts
|

HalfedgeCNN for Native and Flexible Deep Learning on Triangle Meshes

Abstract: We describe HalfedgeCNN, a collection of modules to build neural networks that operate on triangle meshes. Taking inspiration from the (edge‐based) MeshCNN, convolution, pooling, and unpooling layers are consistently defined on the basis of halfedges of the mesh, pairs of oppositely oriented virtual instances of each edge. This provides benefits over alternative definitions on the basis of vertices, edges, or faces. Additional interface layers enable support for feature data associated with such mesh entities … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?