How do we perceive the location of moving objects? The position and motion literature is currently divided. Predictive accounts of object tracking propose that the position of moving objects is anticipated ahead of sensory signals, whilst non-predictive accounts claim that an anticipatory mechanism is not necessary. A novel illusion called the twinkle goes effect, describing a forward shift in the perceived final location of a moving object in the presence of dynamic noise, presents a novel opportunity to disambiguate these accounts. Across three experiments, we compared the predictions of predictive and non-predictive theories of object tracking by combining the twinkle goes paradigm with a multiple object tracking task. Specifically, we tested whether the size of the twinkle goes illusion would be smaller with greater attentional load (as entailed by the non-predictive, tracking continuation theory) or whether it would not be affected by attentional load (as entailed by predictive extrapolation theory). Our results failed to align with either of these theories of object localisation and tracking. Instead, we found evidence that the twinkle goes effect may be stronger with greater attentional load. We discuss whether this result may be a consequence of an essential, but previously unexplored relationship between the twinkle goes effect and representational momentum. In addition, this study was the first to reveal critical individual differences in the experience of the twinkle goes effect, and in the mislocalisation of moving objects. Together, our results continue to demonstrate the complexity of position and motion perception.