2019
DOI: 10.1155/2019/2035324
|View full text |Cite
|
Sign up to set email alerts
|

Hamilton’s Principle for Circuits with Dissipative Elements

Abstract: The classic form of Hamilton’s variational principle does not hold for circuits with dissipative elements. It is shown in the paper that this may not be true in the case of systems consisting of the so-called higher-order elements. Hamilton’s principle is then extended to circuits containing the classical resistors and Frequency Dependent Negative Resistors (FDNRs). The extension is also made to any pair of elements which are the nearest neighbours on any Σ-diagonal of Chua’s table.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 15 publications
0
2
0
Order By: Relevance
“…In order to apply the Lagrange formalism to circuits with HOEs, the transform between these two sets of variables must be used. The following procedure is a generalization of the method described in [19]. Consider the above transform as a linear combination of the variables x i…”
Section: Lawmentioning
confidence: 99%
See 1 more Smart Citation
“…In order to apply the Lagrange formalism to circuits with HOEs, the transform between these two sets of variables must be used. The following procedure is a generalization of the method described in [19]. Consider the above transform as a linear combination of the variables x i…”
Section: Lawmentioning
confidence: 99%
“…Since no other HOEs, the negative resistors being among them, are missing in Wang's table, this table cannot be utilized for our purposes. It is well documented via the impossibility of drawing a Lagrangian for circuits with dissipative elements [19].…”
Section: Introductionmentioning
confidence: 99%