2020
DOI: 10.7151/dmgt.2308
|View full text |Cite
|
Sign up to set email alerts
|

Hamiltonian extendable graphs

Abstract: A graph is called Hamiltonian extendable if there exists a Hamiltonian path between any two nonadjacent vertices. In this paper, we give an explicit formula of the minimum number of edges for Hamiltonian extendable graphs and we also characterize the degree sequence for Hamiltonian extendable graphs with minimum number of edges. Besides, we completely characterize the pairs of forbidden subgraphs for 2-connected graphs to be Hamiltonian extendable.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?