2022
DOI: 10.48550/arxiv.2202.13454
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Hamiltonian field theory close to the wave equation: from Fermi-Pasta-Ulam to water waves

Abstract: In the present work we analyse the structure of the Hamiltonian field theory in the neighbourhood of the wave equation q tt = q xx . We show that, restricting to "graded" polynomial perturbations in q x , p and their space derivatives of higher order, the local field theory is equivalent, in the sense of the Hamiltonian normal form, to that of the Korteweg-de Vries hierarchy of second order. Within this framework, we explain the connection between the theory of water waves and the Fermi-Pasta-Ulam system.

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 23 publications
0
2
0
Order By: Relevance
“…-Model, initial conditions and continuum approximation. All the details of the following analytical derivation are reported in the Supplemental Material [29] (see [32] for the mathematical framework).…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…-Model, initial conditions and continuum approximation. All the details of the following analytical derivation are reported in the Supplemental Material [29] (see [32] for the mathematical framework).…”
mentioning
confidence: 99%
“…Such a "gradient catastrophe" implies a transfer of energy to the highest Fourier modes of wavelength ∼ 1/N , so that a global continuum limit no longer holds after the shock. For a correct continuum description of the shock region, higher order derivatives of the fields must be taken into account, which replaces the Burgers equations with a pair of KdV equations [32,[36][37][38]. However, far from the shock region, the Burgers equation still describes the FPUT dynamics.…”
mentioning
confidence: 99%