Sampling occupies an important position in theories of various scientific fields, and Markov chain Monte Carlo (MCMC) provides the most common technique of sampling. In the progress of MCMC, a huge number of studies have aimed the acceleration of convergence to the target distribution. Hamiltonian Monte Carlo (HMC) is such a variant of MCMC. In the recent development of MCMC, another approach based on the violation of the detailed balance condition has attracted much attention. Historically, these two approaches have been proposed independently, and their relationship has not been clearly understood. In this paper, the two approaches are seamlessly understood in the framework of generalized Monte Carlo method that violates the detailed balance condition. Furthermore we propose an efficient Monte Carlo method based on our framework.