2018 International Joint Conference on Neural Networks (IJCNN) 2018
DOI: 10.1109/ijcnn.2018.8489743
|View full text |Cite
|
Sign up to set email alerts
|

Hand Gesture Recognition and Real-time Game Control Based on A Wearable Band with 6-axis Sensors

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(9 citation statements)
references
References 17 publications
0
7
0
2
Order By: Relevance
“…The main question regarding the further application of our system addresses the size of the gesture vocabulary and the number of samples in the dataset. Although our 10 gestures used in this study is a high number compared with recent research [5,10,18,29], and involving 5 participants to include gesture diversity, our experiments are evaluated only on a total of 500 sequences. We obtained high performance for the LSTM both in F1 score and accuracy, the latter comparable with our ESN framework.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…The main question regarding the further application of our system addresses the size of the gesture vocabulary and the number of samples in the dataset. Although our 10 gestures used in this study is a high number compared with recent research [5,10,18,29], and involving 5 participants to include gesture diversity, our experiments are evaluated only on a total of 500 sequences. We obtained high performance for the LSTM both in F1 score and accuracy, the latter comparable with our ESN framework.…”
Section: Discussionmentioning
confidence: 99%
“…In the context of HCI, wearables are also used in the gaming domain because the sensor input directly measured from the subject allows real-time processing. In this regard, Li et al [18] presented a system to control the Jump&Go Fly Bird game. Gyroscope and accelerometer data were collected from a wristband and gestures manually segmented using video information to mark the start and end phase of a gesture.…”
Section: Related Workmentioning
confidence: 99%
“…En ambos casos, la comprensión del gesto es muy amplia y aplica para diferentes partes del cuerpo: estos faciales [33], con las manos [5], [34], [35], con los dedos [4], [5], [20], o de cuerpo entero [8], [36]. En algunos casos, la complejidad técnica de reconocer la secuencia de acciones que definen un gesto ha llevado a que se utilicen objetos que restrinjan la interacción [11], [18].…”
Section: El Gesto Como Medio De Interacciónunclassified
“…Algunas de las cuestiones que deben ser respondidas en estas etapas son: ¿qué ventana de tiempo es adecuada para preprocesar un conjunto de datos crudos?, ¿cómo se filtran los datos crudos?, ¿de qué manera se pueden comprimir los datos crudos para mantener la información más relevante, sin demandar demasiado espacio de memoria?, ¿se preprocesa el gesto luego de Para el aprendizaje de máquina y la etapa de clasificación o regresión, se han utilizado diferentes técnicas, entre las que destacan: Modelos Ocultos de Markov (HMM) [15], [33], [34], [47], Redes Neuronales [34], Freeman Chain Code [44], Máquinas de Vectores de Soporte [48]- [50], evolución neuronal [35] y aprendizaje profundo [51], [52].…”
Section: Reconocimiento De Gestosunclassified
“…Wearable devices are trending topics in different areas such as healthcare and activity recognition [1,2,3,4,5,6,7], sports [8,9], education [10,11], industry [12,13], human–computer interaction [14] and other areas. The rise of new concepts like the Internet of Things (IoT) [15,16,17] and Industry 4.0 [18] along with hardware miniaturization allow for the development of novel devices and solutions.…”
Section: Introductionmentioning
confidence: 99%