1971
DOI: 10.1007/978-3-642-65138-0
|View full text |Cite
|
Sign up to set email alerts
|

Handbook of Elliptic Integrals for Engineers and Scientists

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
1,291
0
30

Year Published

1983
1983
2017
2017

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 1,654 publications
(1,325 citation statements)
references
References 0 publications
4
1,291
0
30
Order By: Relevance
“…Explicit calculation gives [35] K 1 = iX (−α 6 + 2α 4 + α 2 k 2 − 2α 4 k 2 )E(k) − (k 2 − α 2 )(α 4 − 2α 2 + k 2 )K(k) + (α 8 − 4α 6 k 2 + 6α 4 k 2 − 4α 2 k 2 + k 4 )Π(α 2 , k 2 ) K 2 = iX −α 2 (α 4 − 2α 2 − 2α 2 k 2 + 3k 2 )E(k) − (k 2 − α 2 )(α 4 − 2α 2 + 4α 2 k 2 − 3k 2 )K(k) + (α 8 − 6α 4 k 2 + 4α 2 k 4 + 4α 2 k 2 − 3k 4 )Π(α 2 , k 2 )…”
Section: Comparison With Instanton Computationsunclassified
“…Explicit calculation gives [35] K 1 = iX (−α 6 + 2α 4 + α 2 k 2 − 2α 4 k 2 )E(k) − (k 2 − α 2 )(α 4 − 2α 2 + k 2 )K(k) + (α 8 − 4α 6 k 2 + 6α 4 k 2 − 4α 2 k 2 + k 4 )Π(α 2 , k 2 ) K 2 = iX −α 2 (α 4 − 2α 2 − 2α 2 k 2 + 3k 2 )E(k) − (k 2 − α 2 )(α 4 − 2α 2 + 4α 2 k 2 − 3k 2 )K(k) + (α 8 − 6α 4 k 2 + 4α 2 k 4 + 4α 2 k 2 − 3k 4 )Π(α 2 , k 2 )…”
Section: Comparison With Instanton Computationsunclassified
“…All integrals are evaluated using the tables in [38]. Suppose E 0 < E 1 < E 2 < E 3 are given and R 1/2 4 (z) is defined as usual.…”
Section: The Elliptic Case Genus Onementioning
confidence: 99%
“…For the explicit calculations in the genus one case, I have used the tables for elliptic integrals in [38]. In addition, you might also find [10], [123], and [127] useful.…”
Section: Notes On Literaturementioning
confidence: 99%
See 1 more Smart Citation
“…The length of the arc of a meridian s m between the equator u = 0 and the parallel u = u i on a triaxial ellipsoid described by equation (1) If a > b > c then n m 2 > 0 and according to (Byrd and Friedmann, 1954) the integral I 1m can be presented in the form of: If a > b then n p 2 > 0 and the integral I 1p , similarly as for a meridian can be presented in the form of (Byrd and Friedmann, 1954 Finally, the length of the parallel's arc can be expressed using the equation:…”
Section: Derivation Of Equations For the Lengths Of Meridians Betweenmentioning
confidence: 99%