We review the main neutrino emission mechanisms in neutron star crusts and cores. Among them are the well-known reactions such as the electron-positron annihilation, plasmon decay, neutrino bremsstrahlung of electrons colliding with atomic nuclei in the crust, as well as the Urca processes and neutrino bremsstrahlung in nucleon-nucleon collisions in the core. We emphasize recent theoretical achievements, for instance, band structure effects in neutrino emission due to scattering of electrons in Coulomb crystals of atomic nuclei. We consider the standard composition of matter (neutrons, protons, electrons, muons, hyperons) in the core, and also the case of exotic constituents such as the pion or kaon condensates and quark matter. We discuss the reduction of the neutrino emissivities by nucleon superfluidity, as well as the specific neutrino emission produced by Cooper pairing of the superfluid particles. We also analyze the effects of strong magnetic fields on some reactions, such as the direct Urca process and the neutrino synchrotron emission of electrons. The results are presented in the form convenient for practical use. We illustrate the effects of various neutrino reactions on the cooling of neutron stars. In particular, the neutrino emission in the crust is critical in setting the initial thermal relaxation between the core and the crust. Finally, we discuss the prospects of exploring the properties of supernuclear matter by confronting cooling simulations with observations of the thermal radiation from isolated neutron stars.