2018
DOI: 10.1007/s13369-018-3609-0
|View full text |Cite
|
Sign up to set email alerts
|

Handling Bitemporal Schema Versions in Multi-temporal Environment for Data Warehouse

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…From the last two decades, two methods namely normalized modelling (Inmon, 1991) and dimensional modelling (Kimball, 1996) are governing the implementation of DW in almost all sectors.Ofthese,dimensionalmodellinghasbeenoneofthepredominanttechniquesthattakeDW implementationtonextstage.Nevertheless,traditionaldimensionmodellingdoesnotsupportanew variablecalledtemporaldimensionwhichispopularnowadays.Furthermore,thedatasourceofa traditionalDWdoesnotprovidecompletesupportfortemporaldatawhichcontainsseveraltimedependentaspectsincludingdifferenttimestamps.Thisisduetothefactthattraditionalmethods keeponlytherecordofanyonestateofrealworldenvironmentatavalidtime(i.e.abilitytoview onlyonedataatatime).However,theworldaswellasdataformationchangeswithtimethusthereis aneedfortemporaldatabasetokeeptrackofdatachangeswithinadatabaseenvironment (Ongoma, 2014).Thus,researchersfocussedontheintroductionoftemporaldimensioninDWarchitecture (Hultgren,2012,Rönnbäcketal.,2010,Golecetal.,2017.Temporaldatamodelscanbedeveloped by extending the conceptual model of traditional DW (like UML, ER and ORM) with temporal paradigms.Temporaldimensionisasimpleandnewphenomenonthatrecordsalltime-dependent variables,maintainshistoryofdatabasesandkeepstrackofvariationssoastoplanforthefuture (Gosain & Saroha, 2019). Besides, slowly varying dimensions in certain applications have been represented as temporal variables in the fact table as well as dimension table of DW framework (Araque,2003,Phungtua-Eng&Chittayasothorn,2019.Therefore,theknowledgeacquiredfrom bothdatawarehouseandtemporaldimensionalmodellinggiverisetoanewresearchareatermedas temporaldatawarehouse(TDW).…”
Section: Introductionmentioning
confidence: 99%
“…From the last two decades, two methods namely normalized modelling (Inmon, 1991) and dimensional modelling (Kimball, 1996) are governing the implementation of DW in almost all sectors.Ofthese,dimensionalmodellinghasbeenoneofthepredominanttechniquesthattakeDW implementationtonextstage.Nevertheless,traditionaldimensionmodellingdoesnotsupportanew variablecalledtemporaldimensionwhichispopularnowadays.Furthermore,thedatasourceofa traditionalDWdoesnotprovidecompletesupportfortemporaldatawhichcontainsseveraltimedependentaspectsincludingdifferenttimestamps.Thisisduetothefactthattraditionalmethods keeponlytherecordofanyonestateofrealworldenvironmentatavalidtime(i.e.abilitytoview onlyonedataatatime).However,theworldaswellasdataformationchangeswithtimethusthereis aneedfortemporaldatabasetokeeptrackofdatachangeswithinadatabaseenvironment (Ongoma, 2014).Thus,researchersfocussedontheintroductionoftemporaldimensioninDWarchitecture (Hultgren,2012,Rönnbäcketal.,2010,Golecetal.,2017.Temporaldatamodelscanbedeveloped by extending the conceptual model of traditional DW (like UML, ER and ORM) with temporal paradigms.Temporaldimensionisasimpleandnewphenomenonthatrecordsalltime-dependent variables,maintainshistoryofdatabasesandkeepstrackofvariationssoastoplanforthefuture (Gosain & Saroha, 2019). Besides, slowly varying dimensions in certain applications have been represented as temporal variables in the fact table as well as dimension table of DW framework (Araque,2003,Phungtua-Eng&Chittayasothorn,2019.Therefore,theknowledgeacquiredfrom bothdatawarehouseandtemporaldimensionalmodellinggiverisetoanewresearchareatermedas temporaldatawarehouse(TDW).…”
Section: Introductionmentioning
confidence: 99%