“…From the last two decades, two methods namely normalized modelling (Inmon, 1991) and dimensional modelling (Kimball, 1996) are governing the implementation of DW in almost all sectors.Ofthese,dimensionalmodellinghasbeenoneofthepredominanttechniquesthattakeDW implementationtonextstage.Nevertheless,traditionaldimensionmodellingdoesnotsupportanew variablecalledtemporaldimensionwhichispopularnowadays.Furthermore,thedatasourceofa traditionalDWdoesnotprovidecompletesupportfortemporaldatawhichcontainsseveraltimedependentaspectsincludingdifferenttimestamps.Thisisduetothefactthattraditionalmethods keeponlytherecordofanyonestateofrealworldenvironmentatavalidtime(i.e.abilitytoview onlyonedataatatime).However,theworldaswellasdataformationchangeswithtimethusthereis aneedfortemporaldatabasetokeeptrackofdatachangeswithinadatabaseenvironment (Ongoma, 2014).Thus,researchersfocussedontheintroductionoftemporaldimensioninDWarchitecture (Hultgren,2012,Rönnbäcketal.,2010,Golecetal.,2017.Temporaldatamodelscanbedeveloped by extending the conceptual model of traditional DW (like UML, ER and ORM) with temporal paradigms.Temporaldimensionisasimpleandnewphenomenonthatrecordsalltime-dependent variables,maintainshistoryofdatabasesandkeepstrackofvariationssoastoplanforthefuture (Gosain & Saroha, 2019). Besides, slowly varying dimensions in certain applications have been represented as temporal variables in the fact table as well as dimension table of DW framework (Araque,2003,Phungtua-Eng&Chittayasothorn,2019.Therefore,theknowledgeacquiredfrom bothdatawarehouseandtemporaldimensionalmodellinggiverisetoanewresearchareatermedas temporaldatawarehouse(TDW).…”