Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Cardiopulmonary resuscitation is a crucial skill for emergency medical services. As high-risk-low-frequency events pose an immense mental load to providers, concepts of crew resource management, non-technical skills and the science of human errors are intended to prepare healthcare providers for high-pressure situations. However, medical errors occur, and organizations and institutions face the challenge of providing a blame-free error culture to achieve continuous improvement by avoiding similar errors in the future. In this case, we report a critical medical error during an anaphylaxis-associated cardiac arrest, its handling and the unexpected yet favourable outcome for the patient. Case presentation During an out-of-hospital cardiac arrest due to chemotherapy-induced anaphylaxis, a patient received a 10-fold dose of epinephrine due to shortcomings in communication and standardization via a central venous port catheter. The patient converted from a non-shockable rhythm into a pulseless ventricular tachycardia and subsequently into ventricular fibrillation. The patient was cardioverted and defibrillated and had a return of spontaneous circulation with profound hypotension only 6 min after the administration of 10 mg epinephrine. The patient survived without any residues or neurological impairment. Conclusions This case demonstrates the potential deleterious effects of shortcomings in communication and deviation from standard protocols, especially in emergencies. Here, precise instructions, closed-loop communication and unambiguous labelling of syringes would probably have avoided the epinephrine overdose central to this case. Interestingly, this serious error may have saved the patient’s life, as it led to the development of a shockable rhythm. Furthermore, as the patient was still in profound hypotension after administering 10 mg of epinephrine, this high dose might have counteracted the severe vasoplegic state in anaphylaxis-associated cardiac arrest. Lastly, as the patient was receiving care for advanced malignancy, the likelihood of termination of resuscitation in the initial non-shockable cardiac arrest was significant and possibly averted by the medication error.
Background Cardiopulmonary resuscitation is a crucial skill for emergency medical services. As high-risk-low-frequency events pose an immense mental load to providers, concepts of crew resource management, non-technical skills and the science of human errors are intended to prepare healthcare providers for high-pressure situations. However, medical errors occur, and organizations and institutions face the challenge of providing a blame-free error culture to achieve continuous improvement by avoiding similar errors in the future. In this case, we report a critical medical error during an anaphylaxis-associated cardiac arrest, its handling and the unexpected yet favourable outcome for the patient. Case presentation During an out-of-hospital cardiac arrest due to chemotherapy-induced anaphylaxis, a patient received a 10-fold dose of epinephrine due to shortcomings in communication and standardization via a central venous port catheter. The patient converted from a non-shockable rhythm into a pulseless ventricular tachycardia and subsequently into ventricular fibrillation. The patient was cardioverted and defibrillated and had a return of spontaneous circulation with profound hypotension only 6 min after the administration of 10 mg epinephrine. The patient survived without any residues or neurological impairment. Conclusions This case demonstrates the potential deleterious effects of shortcomings in communication and deviation from standard protocols, especially in emergencies. Here, precise instructions, closed-loop communication and unambiguous labelling of syringes would probably have avoided the epinephrine overdose central to this case. Interestingly, this serious error may have saved the patient’s life, as it led to the development of a shockable rhythm. Furthermore, as the patient was still in profound hypotension after administering 10 mg of epinephrine, this high dose might have counteracted the severe vasoplegic state in anaphylaxis-associated cardiac arrest. Lastly, as the patient was receiving care for advanced malignancy, the likelihood of termination of resuscitation in the initial non-shockable cardiac arrest was significant and possibly averted by the medication error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.