The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as lowpower consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the opticalelectrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation.Keywords: 5G, backhaul, centralized unit (CU), common public radio interface (CPRI), distributed unit (DU), fiber to the X (FTTX), fronthaul, functional split, optical wireless communication (OWC), passive optical network (PON), photonic integrated circuits (PICs), radio access network (RAN), radio over fiber (RoF) 1 mobile devices and applications in the networks. This is in an effort to enhance the user experience in delivering enhanced mobile broadband (eMBB) services and providing ultra-reliable low-latency communication (uRLLC) for critical communication and control services. In theory, IoT comprises universal existence of a collection of things like mobile PCs, tablets, smartphones, actuators, sensors, wireless routers, as well as radio-frequency identification (RFID) tags. It is remarkable that these devices are capable of cooperating not only with each other but also with their neighbors. By this approach, they are able to achieve common network goals by means of unique addressing scheme [1,2]. Furthermore, it has been predicted that massive number of mobile devices on which various bandwidth-intensive applications and services will be operating and will be Internet connected [3]. In actual fact, there is a tremendous demand for effective systems that are capable of delivering various services in a cost-effective manner while meeting the essential network demands. Consequently, in an effort to accomplish the next-generation mobile network technical demands, there have been intensive researches on viable solutions th...