Motivation : The problem of handwritten text recognition is vastly studied since last few decades. Many innovative ideas have been developed, where state-of-the-art accuracy is achieved for the English, Chinese or Indian scripts. The recent developments for the cursive scripts such as Arabic and Urdu handwritten text recognition have achieved remarkable accuracy. However, for the Sindhi script, existing systems have not shown significant results and the problem is still an open challenge. Several challenges such as variations in writing styles, joined text, ligature overlapping, and others associated to the handwritten Sindhi text make the problem more complex. Objectives: In this study, a deep residual network with shortcut connections and summation fusion method using convolutional neural network (CNN) is proposed for automatic feature extraction and classification of handwritten Sindhi characters. Method: To increase the powerful feature representation ability of the network, the features of the convolutional layers in the residual block are fused together and combined with the output of the previous residual block. The proposed network is trained on a custom developed handwritten Sindhi character dataset. To tackle the problem of small data, a data augmentation with rotation, flipping and image enhancement techniques have been used. Findings: The experimental results show that the proposed model outperforms than the best results previously published for the handwritten Sindhi character recognition. Novelty: This is the first research that proposes deep residual network with summation fusion for the Sindhi handwritten text recognition.