From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.