Thermally activated delayed fluorescence (TADF) emitters based on multiple resonance (MR) effects are promising for high-definition organic light-emitting diodes (OLEDs) with narrowband emission and high efficiency. However, they still face the challenges of aggregation-caused quenching (ACQ) and spectral broadening. Solution-processable MR-TADF emitters with an external quantum efficiency (EQE) of >20% and a full width at half-maximum (fwhm) of <30 nm have rarely been reported. To construct ACQ-resistant emitters without sacrificing color purity, the aggregation-induced MR-TADF material 6TBN with a rigid B,N-containing polycyclic aromatic hydrocarbon core and four carbazole substituents as well as 12 tert-butyl groups on the periphery is designed. The multidimensional shielded effect largely limits the ACQ, intermolecular interactions, and spectral broadening. Consequently, solution-processed OLEDs based on 6TBN exhibit a maximum EQE of 23.0% and high color purity with a fwhm of 25 nm. Furthermore, the nondoped device achieves a high efficiency (12.3%) and merely a slight widening of the fwhm to 27 nm. This work provides a feasible strategy to achieve MR-TADF materials with resistance to concentration quenching and high color purity.