2022
DOI: 10.1007/s10986-022-09559-8
|View full text |Cite
|
Sign up to set email alerts
|

Hankel determinants of order four for a set of functions with bounded turning of order α

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…On some recently obtained sharp bounds of third Hankel determinant for the Ma-Minda class, we list them in Table 1 for references. For bounds of this determinant on other classes of univalent functions, we refer to [18] , [19] , [20] , [21] .…”
Section: Introductionmentioning
confidence: 99%
“…On some recently obtained sharp bounds of third Hankel determinant for the Ma-Minda class, we list them in Table 1 for references. For bounds of this determinant on other classes of univalent functions, we refer to [18] , [19] , [20] , [21] .…”
Section: Introductionmentioning
confidence: 99%
“…Goel and Mehrok [8], Macgregor [9], and Silverman and Silvia [17] were among the first researchers to study the classes R, R (δ), and R (α). Recently, the investigation into the class of bounded turning functions and coefficient problems such as the Hankel determinant for the higher order has been extensively studied by other researchers, see for example [3,4]. We may point interested readers to recent advances in the class of bounded turning functions connected to a three-leaf-shaped domain and Bernoulli's lemniscate as well as their coefficient problems like the Hankel determinant, logarithmic coefficients, and the Hankel determinant with logarithmic coefficients, which point in a different direction than the current study, see [16,23].…”
Section: Introductionmentioning
confidence: 99%