In this paper we introduce an axiomatic approach to the theory of s-numbers in quaternionic analysis. To this end, Pietsch’s approach to s-number theory is adapted to the quaternionic framework, following the works of Colombo and Sabadini on quaternionic spectral analysis. One of the main results of this paper is the uniqueness of s-numbers over quaternionic Hilbert spaces. Moreover, examples are given in the quaternionic framework together with the introduction of nuclear numbers. A consequence of the presented theory is a basis independent definition of the Schatten classes over quaternionic Hilbert and Banach spaces.