Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
SOEPpapers on Multidisciplinary Panel Data Research at DIW BerlinThis series presents research findings based either directly on data from the German SocioEconomic Panel study (SOEP) or using SOEP data as part of an internationally comparable data set (e.g. CNEF, ECHP, LIS, LWS, CHER/PACO). SOEP is a truly multidisciplinary household panel study covering a wide range of social and behavioral sciences: economics, sociology, psychology, survey methodology, econometrics and applied statistics, educational science, political science, public health, behavioral genetics, demography, geography, and sport science.The decision to publish a submission in SOEPpapers is made by a board of editors chosen by the DIW Berlin to represent the wide range of disciplines covered by SOEP. There is no external referee process and papers are either accepted or rejected without revision. Papers appear in this series as works in progress and may also appear elsewhere. They often represent preliminary studies and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be requested from the author directly.Any opinions expressed in this series are those of the author(s) and not those of DIW Berlin.Research disseminated by DIW Berlin may include views on public policy issues, but the institute itself takes no institutional policy positions. The most common practice-comparing well-being by means of descriptive analysis or linear regressions-ignores that the underlying collected well-being information is ordinal. If the well-being function is ordinal, then monotonic transformations are allowed. We demonstrate that treating ordinal data by methods intended to be used for cardinal data may give an incorrect impression of a robust result. Particularly, we derive the conditions under which the use of cardinal method to an ordinal variable gives an illusionary sense of robustness, while in fact one can reverse the conclusion reached by using an alternative cardinal assumption. The paper provides empirical applications.