Several recent studies have demonstrated that the transplantation of pluripotent murine embryonic stem cells (mESCs) can improve or restore the function of infarcted myocardium. Although the extent of remuscularization and its contribution to the restoration of function are unclear, these outcomes are likely strongly influenced by factors in the infarcted and/or ischemic environment. As an initial step toward understanding how the ischemic environment of host myocardium affects transplanted pluripotent cells, we have taken a reductionist approach wherein mESCs are cultured in medium containing ischemic myocardial interstitial fluid (iMIF). iMIF is generated in canine myocardium during eight hourly episodes of transient ischemia and collected on a daily basis, over a 24-day collection period. iMIF strongly reduced the numbers of pluripotent mESCs after 11 days in culture. This inhibitory effect, which was most pronounced for iMIF pools from early time points of the 24-day collection period, resulted from an inhibition of cell proliferation. iMIF also inhibited the differentiation of pluripotent mESCs into cardiomyocytes. By contrast, the expression of vascular smooth muscle and endothelial cell markers was relatively unaffected, consistent with previous findings that iMIF promotes angiogenesis. Taken together, these results suggest that whereas the ischemic/infarcted environment is favorable to stem cell-mediated angiogenesis, it is hostile to cardiac myogenesis. These findings also imply that observations of mESC-mediated improvement of cardiac function after transplantation of pluripotent cells do not reflect remuscularization.