WATTS, P. 1992. Thermal constraints on hauling out by harbour seals (Phoca vitulina). Can. J. Zool. 70: 553 -560.Measurements of the thermal environment were made in conjunction with regular counts of hauled out harbour seals at three sites in the Pacific Northwest. Solar radiation, wind speed, and air temperature were all significantly correlated with numbers of seals on land. These were incorporated into a thermal index of heat flux (expressed in watts per square metre) between the seal and its environment. Numbers of seals hauled out at midday declined sharply as flux increased above 0 W . m-2 (i.e., when seals theoretically gained net heat from their environment), but remained constant at all measured negative values of flux. This relationship could be described by a nonlinear piecewise regression equation ( t d j = 0.648). No significant differences in hauling activity were detected between sites throughout most of the year. During the summer, however, one site with significantly higher mean flux than the others also exhibited significantly lower hauling activity. These findings are consistent with the hypothesis that under temperate summer conditions, hauling out can result in overheating. This may be an important constraint on hauling behaviour. WATTS, P. 1992. Thermal constraints on hauling out by harbour seals (Phoca vitulina). Can. J. Zool. 70 : 553-560. Des mesures de l'environnement thermique ont CtC prises lors du dknombrement de Phoques communs en repos hors de l'eau B trois sites du Nord-Ouest amkricain. Les variables suivantes, radiation solaire, vitesse du vent et tempkrature de l'air, Ctaient toutes en corrklation significative avec le nombre de phoques hors de l'eau. Ces variables ont CtC incorporkes B un indice thermique du flux de chaleur (exprim6 en watts par mktre carrC) entre le phoque et son environnement. Le nombre de phoques hors de l'eau au milieu de la journCe diminuait brusquement au moment oh l'indice atteignait des valeurs supCrieures B 0 W -m-2 (i.e., lorsque les phoques faisaient thkoriquement des gains nets de chaleur), mais ce nombre Ctait constant B toutes les valeurs nCgatives de flux. La relation pourrait &re dCcrite par une Cquation de rkgression non linCaire segmentCe (rzdj = 0,648