2017
DOI: 10.1007/978-3-319-61982-8_3
|View full text |Cite
|
Sign up to set email alerts
|

Hard Faults and Soft-Errors: Possible Numerical Remedies in Linear Algebra Solvers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 21 publications
0
4
0
2
Order By: Relevance
“…Preconditioning is omitted in this section for simplicity of notation but without loss of generality. 1 In this section we use a notation with bars to indicate variables that are computed in a finite precision setting. Furthermore, for variables that are defined recursively in the algorithm, we differentiate between the recursively computed variable and the 'actual' variable, i.e.…”
Section: Analysis Of the Attainable Accuracy Of P(l)-cg In Finite Pre...mentioning
confidence: 99%
See 1 more Smart Citation
“…Preconditioning is omitted in this section for simplicity of notation but without loss of generality. 1 In this section we use a notation with bars to indicate variables that are computed in a finite precision setting. Furthermore, for variables that are defined recursively in the algorithm, we differentiate between the recursively computed variable and the 'actual' variable, i.e.…”
Section: Analysis Of the Attainable Accuracy Of P(l)-cg In Finite Pre...mentioning
confidence: 99%
“…Additionally, other error effects (e.g. delayed convergence due to loss of basis orthogonality in finite precision [29,32,46,23,6], hard faults and soft errors [1], etc.) may affect the convergence of pipelined CG.…”
mentioning
confidence: 99%
“…The analysis in this work focuses on understanding the impact of local rounding errors in the multi-term recurrence relation pipelined BiCGStab algorithm on the attainable precision of the iterative solution. Other sources of errors, such as rounding errors due to loss of basis orthogonality [45], system noise related errors [49] or hard faults/soft errors [1] are not considered in this study. These topics will be considered in the context of pipelined Krylov methods as part of future work.…”
Section: Discussionmentioning
confidence: 99%
“…Buna bağlı olarak literatürde çip üzerindeki devre elemanlarının arttırılmış ışınıma karşı dayanımlarını test eden çok sayıda deneysel çalışma bulunmaktadır [15]. Yine benzer bir şekilde, büyük ölçekli entegre devrelerin farklı tasarım seviyelerinde geçici hataların etkilerinin incelenmesine ilişkin birçok çalışma da literatürde mevcuttur [16]. Öte yandan eğer geçici hatanın daha yüksek seviyelerdeki etkileri (örneğin sayısal simülasyonlar üzerindeki etkisi) ölçülmek isteniyorsa bu tip donanım seviyesinde yapılacak modellemeler yetersiz kalacaktır.…”
Section: Yük Akışı Probleminde Geçici Hata Modellemesi (Modelling The...unclassified