Machines operating in cycles and their properties have not been studied in depth in literature and, as such, are not well described by integral mathematical models. If the effects of their operation are actions on the given working surfaces under given constraints, then the quality of the affected surfaces can be described by reliability functions. In this manner, the operating capabilities of the platform can be determined. A majority of the published papers use a standard approach to the measured performances that depend on the machine's designed purposes. Such processes are described in [1] to [3] for the abrasive flow machines (AFM) with which material is hardened by randomly treating the working surface with abrasive particles with polymeric fillers, and dispersed within the flow media. The authors of [1] classified the work piece parameters into three groups based, among others, on the number of cycles (operations) and the machining time. Some of these parameters were determined experimentally in [2], in which the authors recognized that the parameters denoted as the creeping time and the cycles frequency have impact on the quality of the machining process. In [3], the authors experimentally prove that the aforementioned parameters influence the process. Common for all three papers is that they do not include hidden random effects caused by particles affecting the surfaces in cyclic operations, although such effects significantly influence the quality of the surface treatment. In all three papers, there is no mathematical modelling of the process.Another similar type of machine with cyclic operation affecting working surfaces is described in [4] as shot-peening (SP) platforms. They bombard a surface with spherical beads to increase the material fatigue strength. The physical modelling of the influence of the bead shapes on the performance of the surface hardening process is presented in [5]. Random surface effects due to bombing cycles are a result of the quality of the machine's performance. However, the connection between the effects and the particular operations is missing in • Proposed methodology for performances degradation caused by operations composed in cycles.• Using Gaussian probability distribution law to predict degradation measures.• Predicting the changes of probability dispersion based on modelling and experimental data.• Determination of an analytical model based on a hypothesis that the degrading effects are a function of the platform capacity, frequency of operations and the number of available cycles.