Recently, the growing number of Autonomous Underwater Vehicles (AUVs) can be seen. These vehicles are power supplied and controlled from the sources located on their boards. To operate autonomously underwater robots have to be equipped with the diff erent sensors and software for making decision based on the signals from these sensors. The goal of the paper is to show initial research carried out for underwater objects recognition based on video images. Based on several examples included in the literature, the object recognition algorithm proposed in the paper is based on the deep neural network. In the research, the network and training algorithms accessible in the Matlab have been used. The fi nal software will be implemented on board of the Biomimetic Autonomous Underwater Vehicle (BAUV), driven by undulating propulsion imitating oscillating motion of fi ns, e.g. of a fi sh. Sažetak U posljednje vrijeme može se uočiti sve veći broj autonomnih podvodnih plovila (AUV). Ova plovila imaju pogon i kontroliraju ih izvori koji se nalaze na njima. Da bi radili, autonomno podvodni roboti moraju biti opremljeni raznim senzorima i softverom kako bi se donosile odluke na temelju signala primljenih s pomoću senzora. Cilj je ovoga rada prikazati početno istraživanje provedeno na prepoznavanju podvodnih objekata putem videa. Na temelju nekoliko primjera koji se mogu naći u literaturi, algoritam za prepoznavanje objekata koji se predlaže u ovome radu temelji se na dubokim neuronskim mrežama. U istraživanju koristili su se dostupna mreža i algoritmi za obuku u Matlabu. Konačno dobiveni softver primijenit će se na biomimetrijskom autonomnom podvodnom plovilu (BAUV), pogonjenom valovitim pogonom koji imitira oscilirajuće gibanje peraja, npr. ribljih peraja.