In this paper, we aim to establish the
sharp maximal pointwise estimates for the multilinear commutators generated by multilinear strongly singular Calderón–Zygmund operators and BMO functions or Lipschitz functions, respectively. As applications, the boundedness of these multilinear commutators on product of weighted Lebesgue spaces are obtained.
It is interesting to note that there is no size condition assumption for the kernel of the multilinear strongly singular Calderón–Zygmund operator. Due to the stronger singularity for the kernel of the multilinear strongly singular Calderón–Zygmund operator, we need to be more careful in estimating the mean oscillation over the small balls to get the sharp maximal function estimates.